当前,30 亿参数的 “小模型“ 的性能已经达到最开始 ChatGPT 所使用的 1750 亿参数模型的效果。这得益于更好的压缩技术(distillation 蒸馏、quantization 量化等),以及更高质量的训练数据。
这个小型化过程会带来显著的好处:边缘侧和端侧通常算力是有限的,没办法部署大模型,但小型的模型如果性能够,就可以用的起来。(而边缘和端侧等低延迟特性就可以发挥起来了)。
与此同时,我们也想到了另一个问题,甲方企业 CIO 的难题。通常一个 IT 项目从立项招标到部署应用,起码要耗费几个月,甚至更久的时间。而模型改进(如下图所示)是以月为单位进步的,